Math, asked by suni14th, 3 months ago

prove that cos (π/3 +x) = 1/2 (cos x - √3 sin x)
please solve this urgent​

Answers

Answered by Anonymous
77

Question : To prove \textsf{Cos }\frac{\pi }{3+x} = \frac{1}{2} \textsf{(cos x }\sqrt[3]{sin \:x})

Solution:

We know that,

\textsf{cos(A+B)=cosA cosB-sinA sinB}

Substituting ,

\textsf{cos}(\frac{\sqrt{\pi +x}}{3})=\frac{\sqrt{\pi }}{3}\textsf{cos x-sin}(\frac{\sqrt{\pi }}{3})\textsf{sin x}\\\\\textsf{A=}\pi \: \textsf{and B=x}\\\\\textsf{cos}(\frac{\pi}{3})+x=\textsf{cos x}-\frac{\sqrt{3}}{2}}\textsf{sin x}\\\\\textsf{cos}(\frac{\pi}{3})+x=\frac{1}{2}(\textsf{cos x} -\sqrt{3}\textsf{sin x})\\

So

\textsf{Cos }\frac{\pi }{3+x} = \frac{1}{2} \textsf{(cos x }\sqrt[3]{sin \:x}) \textsf{is not true.}

Answered by ZaraAntisera
2

Answer:

nope ( π/3+x≠1/2

umm am a bit lazy i solved it in my notebook

dirtily so i can't show you and i can't type it again so

죄송합니다

                                                             JENNIE

죄송합니다 :(

Similar questions