Math, asked by debopamghosh, 4 months ago

prove that cos π/32

Answers

Answered by bsbelagaon
0

Answer:

ntg to por isso

Step-by-step explanation:

46765 y7hhbuvu divino

Answered by mathdude500
2

\large\underline\purple{\bold{Correct \:  Statement  :-  }}

\sf \:  Prove  \: that  : cos(\dfrac{\pi}{32} ) = \dfrac{ \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2} } }} }{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \: \blue{Evaluate} : cos(\dfrac{\pi}{32} )

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Identities \:  used :- :-  }}

\bf \: ❥︎ \: {cos}^{2} x = \dfrac{1 + cos2x}{2}

\bf \:❥︎ \: cos(\dfrac{\pi}{4} ) = \dfrac{1}{ \sqrt{2} }  =  \dfrac{ \sqrt{2} }{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:❥︎ \: Step :- 1.

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{8}  = \dfrac{1 + cos(2 \times \dfrac{\pi}{8} )}{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{8}  = \dfrac{1 + cos\dfrac{\pi}{4} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{8}  =\dfrac{1 + \dfrac{ \sqrt{2} }{2} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{8}  =\dfrac{2 +  \sqrt{2} }{4}

\bf\implies \:cos(\dfrac{\pi}{8} ) = \dfrac{ \sqrt{2 +  \sqrt{2} } }{2}

\sf \:  (\because \: \dfrac{\pi}{8}  \: lies \: in \: first \: quadrant.)\sf \:  ⟼cos(\dfrac{\pi}{8} ) > 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:❥︎ \: Step :- 2.

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{16}  =\dfrac{1 + cos(2 \times \dfrac{\pi}{16}) }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{16}  =\dfrac{1 + cos\dfrac{\pi}{8} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{16}  =\dfrac{1 + \dfrac{ \sqrt{2 +  \sqrt{2} } }{2} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{16}  = \dfrac{2 +  \sqrt{2 +  \sqrt{2} } }{4}

\bf\implies \:cos(\dfrac{\pi}{16} ) =  \sqrt{\dfrac{2 +  \sqrt{2 +  \sqrt{2} } }{4} }

\bf \:  ⟼ cos(\dfrac{\pi}{16} ) = \dfrac{ \sqrt{2 +  \sqrt{2 +  \sqrt{2} } } }{2}

\sf \: (\because \: \dfrac{\pi}{16}  \: lies \: in \: first \: quadrant.)\sf \:  ⟼cos(\dfrac{\pi}{16} ) > 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:❥︎ \: Step :- 3.

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{32}  =\dfrac{1 + cos(2 \times \dfrac{\pi}{32}) }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{32}  = \dfrac{1 + cos \dfrac{\pi}{16} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{32}  = \dfrac{1 + \dfrac{ \sqrt{2 +  \sqrt{2 +  \sqrt{2} } } }{2} }{2}

\sf \:  ⟼ {cos}^{2} \dfrac{\pi}{32}  = \dfrac{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2} } } }{4}

\sf \:  ⟼  (\because \: \dfrac{\pi}{32}  \: lies \: in \: first \: quadrant.)\bf \:  ⟼ cos(\dfrac{\pi}{32} ) > 0

\bf \:cos(\dfrac{\pi}{32} ) = \dfrac{ \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2} } }} }{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

{\boxed{\boxed{\bf{Hence, \sf \:cos(\dfrac{\pi}{32} ) = \dfrac{ \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2} } }} }{2} }}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions