Prove that
Cos 36 - sin 18° = 1/2
Answers
Answered by
0
Step-by-step explanation:
Cos 36 = Sin 54
Cos 36 - Sin 18 = Sin 54 - Sin 18
Sin A - Sin B = 2 sin ½ (A − B) cos ½ (A + B)
= 2 sin ½ (54 − 18) cos ½ (54 + 18)
= 2 sin ½ (36) cos ½ (72)
= 2* Sin 18 * Cos 36 ------(1)
Sin 2A = 2 Sin A Cos A
let's take A is 18
Sin 36 = 2* Sin 18 * Cos 18
sin(18)=sin(36)/(2∗cos(18))
Sub in (1)
=> cos(36)∗sin(36)/cos(18)
Cos 18 = Sin 72
and cos(36)∗sin(36) = 0.5* Sin 72
=> 0.5* Sin 72/ Sin 72
= 1/2
Hence proved.
Hope you are satisfied with the solution.
Similar questions