Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Answers
Answered by
2
Step-by-step explanation:
cos3A+cos5A+cos7A+cos15A=
2cos(3A+5A)/2×cos(5A-3A)/2
+2cos(15A+7A)/2×cos(15A-7A)/2
=2cos4A.cosA+2cos11Acos4A
=2cos4A(cosA+cos11A)
=2cos4A(2cos12A/2.cos10A/2)
=4cos4A cos6A cos5A (Proved)
Answered by
29
2cos [5A+3A/2] cos [5A-3A/2]+2 cos [15A+7A 2] cos [15A-7A/2]
=2cos4AcosA + 2cos11Acos4A
=2cos4A [cosA+cos11A]
=2cos4A [2cos [11A + A/2] Cos[11A - A/2]
=2cos4A2cos5Acos6A
=4cos4Acos5Acos6A.
Hope it helps you mate.
Similar questions
Science,
4 months ago
Math,
4 months ago
Social Sciences,
9 months ago
English,
1 year ago
Chemistry,
1 year ago