Hindi, asked by ishaa5417, 7 months ago

Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A​

Answers

Answered by Anonymous
20

Question :

Prove that

cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A

Formula used :

\sf\:1)\cos(a)+\cos(b)=2\cos(\dfrac{a+b}{2})\cos(\dfrac{a-b}{2})

\sf\:2)\cos(a)-\cos(b)=-2\sin(\dfrac{a+b}{2})\sin(\dfrac{a-b}{2})

\sf\:3)\sin(a)+\sin(b)=2\sin(\dfrac{a+b}{2})\sin(\dfrac{a-b}{2})

\sf\:4)\sin(a)-\sin(b)=2\cos(\dfrac{a+b}{2})\sin(\dfrac{a-b}{2})

Solution :

We have to prove that

cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A

\sf\blue{LHS}=\cos3A+\cos5A+\cos7A+\cos15A

\sf=[\cos15A+\cos3A]+[\cos7A+\cos5A]

Now use the formula of \sf\green{\cos\:a+\cos\:b}

then ,

\sf=2\cos(\dfrac{15A+3A}{2})\cos(\dfrac{15A-3A}{2})+2\cos(\dfrac{7A+5A}{2})\cos(\dfrac{7A-5A}{2})

\sf=2\cos(\dfrac{18A}{2})\cos(\dfrac{12A}{2})+2\cos(\dfrac{12A}{2})\cos(\dfrac{2A}{2})

\sf=2\cos9A\cos6A+2\cos6A\cos\:A

\sf=2\cos6A[\cos9A+\cos\:A]

Again use the formula of \sf\pink{\cos\:a+\cos\:b}

then ,

\sf=2\cos6A[2\cos(\dfrac{9A+A}{2})\cos(\dfrac{9A-A}{2})]

\sf=2\cos6A[2\cos(\dfrac{10A}{2})\cos(\dfrac{8A}{2})]

\sf=2\cos6A[2\cos5A\cos4A]

\sf=4\cos6A\cos5A\cos4A

\sf\blue{RHS}=4\cos6A\cos5A\cos4A

Now, \sf\pink{LHS=RHS}

Hence Proved

________________________

More Formula's:

\sf1)\sin(a+b)=\sin\:a\cos\:b+\sin\:b\cos\:a

\sf2)\sin(a-b)=\sin\:a\cos\:b-\sin\:b\cos\:a

\sf3)\cos(a+b)=\cos\:a\cos\:b-\sin\:b\sin\:a

\sf4)\cos(a-b)=\cos\:a\cos\:b+\sin\:b\sin\:a

Similar questions