prove that (cos^3A-sin^3)/(cosA-sinA)=(1+sinA)
Answers
Answered by
0
Answer:
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
so cos^3A+sin^3A=(cosA+sinA)(cos^2A-cosAsinA+sin^2A)
so [cos^3A+sin^3A]/[cosA+sinA]=1-sinAcosA......................1
sin^2A+cos^2A=1
similarly
cos^A-sin^2A=(cosA-sinA)(cos^2A+sinAcosA+sin^2A)
so
[cos^3A-sin^3A]/[cosA-sinA]=1+sinAcosA.............................2
so adding both equation
1-sinAcosA+1+sinAcosA
2
LHS=RHS
don't mark me brainlest if you mrk me brainlest your accout delete from here try on your own risk
Similar questions
Social Sciences,
4 months ago
Math,
4 months ago
Biology,
9 months ago
Math,
9 months ago
Sociology,
1 year ago