Math, asked by abhi6582, 10 months ago

prove that cos^3acos3a+sin^3asina=cos^3 2a​

Answers

Answered by FIREBIRD
15

Step-by-step explanation:

We Have :-

 \cos^{3}(a) \:  \cos(3a)  +  \sin^{3} (a)  \sin(3a)

To Prove :-

 \cos^{3}(a) \:  \cos(3a)  +  \sin^{3} (a)  \sin(3a)  =  \cos^{3} (2a)

Solution :-

 \cos^{3}(a) \:  \cos(3a)  +  \sin^{3} (a)  \sin(3a)  \\  \\  \\ we \: know \: that \:  \\  \\  \\  \sin(3a)  = 3 \sin(a)  - 4 \sin^{3} (a)  \\  \\  \\  \cos(3a)  = 4 \cos^{3} (a)  - 3 \cos(a)  \\  \\  \\ using \: this \: in \: lhs \\  \\  \\  \cos^{3} (a) (4 \cos^{3} (a)  - 3 \cos(a) ) +  \sin^{3} (a) (3 \sin(a)  - 4 \sin^{3} (a)) \\  \\  \\ 4 \cos^{6} (a)  - 3 \cos^{4} (a)  + 3  \sin^{4}(a) - 4 \sin^{6} (a)  \\  \\  \\ 4( \cos^{6} (a)  -  \sin^{6} (a) )  - 3( \cos^{4} (a)  -  \sin^{4} (a) ) \\  \\  \\ 4( (\cos^{2} (a))^{3}   -  (\sin^{2} (a))^{3}  )  - 3( (\cos^{2} (a) ) ^{2} -  \sin^{2} (a))^{2}  )  \\  \\  \\ 4( \cos^{2} (a)  -  \sin^{2} (a) )(( \cos^{2} (a))^{2}  + ( \sin^{2} (a))^{2}  +  \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{2} (a)  -  \sin^{2} (a) )( \cos ^{2} (a)  +  \sin^{2} (a) ) \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )(4(( \cos^{2} (a))^{2}  + ( \sin^{2} (a))^{2}  +  \cos^{2} (a)  \sin^{2} (a) )) - 3\times 1  \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((4\cos^{4} (a)  + 4\sin^{4} (a) + 4 \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{2} (a)   +  \sin^{2} (a) ) ^{2} ) \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((4\cos^{4} (a)  + 4\sin^{4} (a) + 4 \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{4} (a)   +  \sin^{4} (a)  + 2 \cos^{2} \sin^{2} (a)  ) ) \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((cos^{4} (a)    + \sin^{4} (a)  -  2 \cos^{2} \sin^{2} (a)  ) )  \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a))( \cos^{2} (a)  -  \sin^{2} (a) ) ^{2}  \\  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )^{3}  \\  \\  \\(  \cos(2a) )^{3}  \\  \\  \\ \cos^{3} (2a) \\  \\  \\  = rhs \\  \\  \\ hence \: proved

Answered by Anonymous
12

\huge{\underline{\sf{Solution:-}}}

 \cos^{3}(a) \:  \cos(3a)  +  \sin^{3} (a)  \sin(3a) \\ \\ We \: know \: that \: \\  \\  \sin(3a)  = 3 \sin(a)  - 4 \sin^{3} (a) \\  \\  \cos(3a)  = 4 \cos^{3} (a)  - 3 \cos(a) \\  \\ Using \: this \: in \: LHS \\  \\  \cos^{3} (a) (4 \cos^{3} (a)  - 3 \cos(a) ) +  \sin^{3} (a) (3 \sin(a)  - 4 \sin^{3} (a)) \\  \\ 4 \cos^{6} (a)  - 3 \cos^{4} (a)  + 3  \sin^{4}(a) - 4 \sin^{6} (a) \\  \\ 4( \cos^{6} (a)  -  \sin^{6} (a) )  - 3( \cos^{4} (a)  -  \sin^{4} (a) ) \\  \\ 4( (\cos^{2} (a))^{3}   -  (\sin^{2} (a))^{3}  )  - 3( (\cos^{2} (a) ) ^{2} -  \sin^{2} (a))^{2}  )  \\  \\ 4( \cos^{2} (a)  -  \sin^{2} (a) )(( \cos^{2} (a))^{2}  + ( \sin^{2} (a))^{2}  +  \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{2} (a)  -  \sin^{2} (a) )( \cos ^{2} (a)  +  \sin^{2} (a) ) \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )(4(( \cos^{2} (a))^{2}  + ( \sin^{2} (a))^{2}  +  \cos^{2} (a)  \sin^{2} (a) )) - 3\times 1  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((4\cos^{4} (a)  + 4\sin^{4} (a) + 4 \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{2} (a)   +  \sin^{2} (a) ) ^{2} ) \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((4\cos^{4} (a)  + 4\sin^{4} (a) + 4 \cos^{2} (a)  \sin^{2} (a) ) - 3( \cos^{4} (a)   +  \sin^{4} (a)  + 2 \cos^{2} \sin^{2} (a)  ) ) \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )((cos^{4} (a)    + \sin^{4} (a)  -  2 \cos^{2} \sin^{2} (a)  ) )  \\  \\  ( \cos^{2} (a)  -  \sin^{2} (a))( \cos^{2} (a)  -  \sin^{2} (a) ) ^{2}  \\  \\ ( \cos^{2} (a)  -  \sin^{2} (a) )^{3}  \\  \\ (  \cos(2a) )^{3}  \\ \\ \cos^{3} (2a) \\  \\ = RHS \\  \\ Hence \: proved

Similar questions