Math, asked by romeoaayush24, 4 months ago

prove that cos^4 12A - sin^4 12A = cos 24A​

Answers

Answered by jaiswalkumar112
0

Answer:

Given:

The equation \frac{sin 12A}{sin 4A} -\frac{cos 12A}{cos 4A}

sin4A

sin12A

cos4A

cos12A

.

To Find:

The value of the given equation.

Calculation:

- Take the LCM of the equation and simplify it:

\frac{sin 12A}{sin 4A} -\frac{cos 12A}{cos 4A} = \frac{sin 12A cos 4A - cos 12A sin 4A}{sin 4A cos 4A}

sin4A

sin12A

cos4A

cos12A

=

sin4Acos4A

sin12Acos4A−cos12Asin4A

- Now use the formula sin(x-y) = sinx cosy - cosx siny and multiply both denominator and numerator by 2:

⇒ \frac{sin 12A cos 4A- cos 12A sin 4A}{sin 4A cos 4A} = \frac{2 sin (12A - 4A)}{2 sin 4A cos 4A}

sin4Acos4A

sin12Acos4A−cos12Asin4A

=

2sin4Acos4A

2sin(12A−4A)

- Simplify it and use the formula sin 2x = 2 sinx cosx:

⇒ \frac{2 sin (12A - 4A)}{2 sin 4A cos 4A} = \frac{2 sin 8A}{sin 8A}

2sin4Acos4A

2sin(12A−4A)

=

sin8A

2sin8A

- Cancel out the terms to get the final answer:

⇒ \frac{2 sin 8A}{sin 8A} = 2

sin8A

2sin8A

=2

- So, the value of \frac{sin 12A}{sin 4A} -\frac{cos 12A}{cos 4A} = 2

sin4A

sin12A

cos4A

cos12A

=2

Similar questions