prove that.:– Cos^4 – cos^2 = sin^4 – sin^2
Answers
Answered by
2
Heya user,
We use sin²Ф + cos²Ф = 1;
cos²Ф ( cos²Ф - 1 )
= [ 1 - sin²Ф ] [ - sin²Ф ]
= sin²Ф [ sin²Ф - 1 ] <---- Which is equal to desired result;
We use sin²Ф + cos²Ф = 1;
cos²Ф ( cos²Ф - 1 )
= [ 1 - sin²Ф ] [ - sin²Ф ]
= sin²Ф [ sin²Ф - 1 ] <---- Which is equal to desired result;
Answered by
6
hello users .....
solution:-
we have to prove that:
cos⁴x - cos²x = sin⁴x - sin²x
we know that ;
(1 - sin²x) = cos²x
and
(1 - cos²x) = sin²x
here,
taking LHS...
cos⁴x - cos²x
= cos²x(cos²x - 1)
= - cos²x (1 - cos²x)
= - sin²x cos²x
Now,
taking RHS....
sin⁴x - sin²x
= sin²x( sin²x - 1)
= - sin²x (1 - sin²x)
= -sin²x cos²x
Hence;
LHS= RHS. proved ..
✡⭐ Hope it helps ✡⭐
solution:-
we have to prove that:
cos⁴x - cos²x = sin⁴x - sin²x
we know that ;
(1 - sin²x) = cos²x
and
(1 - cos²x) = sin²x
here,
taking LHS...
cos⁴x - cos²x
= cos²x(cos²x - 1)
= - cos²x (1 - cos²x)
= - sin²x cos²x
Now,
taking RHS....
sin⁴x - sin²x
= sin²x( sin²x - 1)
= - sin²x (1 - sin²x)
= -sin²x cos²x
Hence;
LHS= RHS. proved ..
✡⭐ Hope it helps ✡⭐
Ankit1408:
hope this helps ✡✡✡
Similar questions