Math, asked by neha2515, 1 year ago

prove that cos 4 theta minus sin 4 theta equals to 1 - 2 sin squared theta

Answers

Answered by rihansabri208
17
I think It will help for you
Attachments:
Answered by harendrachoubay
42

\cos ^{4} \theta-\sin ^{4} \theta=1-2\sin ^{2} \theta.

Step-by-step explanation:

L.H.S.= \cos ^{4} \theta-\sin ^{4} \theta

=( \cos ^{2})^{2} \theta-(\sin ^{2} \theta)^{2}

=(\cos ^{2} \theta+\sin ^{2} \theta)(\cos ^{2}  \theta-\sin ^{2} \theta)

[ ∵ a^{2} -b^{2} =(a+b)(a-b)]

=(1)(\cos ^{2} \theta-\sin ^{2} \theta)

[ \cos ^{2} \theta+\sin ^{2} \theta=1]

=(1-\sin ^{2} \theta-\sin ^{2} \theta)

=1-2\sin ^{2} \theta

= R.H.S., proved.

Hence,\cos ^{4} \theta-\sin ^{4} \theta=1-2\sin ^{2} \theta.

Similar questions