prove that
cos(45° + A)÷
cos(45º - A) =
sec2A-tan2A
Answers
Step-by-step explanation:
LHS =
Multiplying numerator and denominator by cos(x)-sin(x)
= RHS
Hence Proved
Answer:
LHS =
\frac{ \cos(45 + x) }{ \cos(45 - x) }
cos(45−x)
cos(45+x)
= \frac{ \cos(x) \cos(45) - \sin(x) \sin(45) }{ \cos(x) \cos(45) + \sin(x) \sin(45)}=
cos(x)cos(45)+sin(x)sin(45)
cos(x)cos(45)−sin(x)sin(45)
= \frac{ \cos(x) \frac{1}{ \sqrt{2} } - \cos(x) \frac{1}{ \sqrt{2} } }{\cos(x) \frac{1}{ \sqrt{2} } + \cos(x) \frac{1}{ \sqrt{2} } }=
cos(x)
2
1
+cos(x)
2
1
cos(x)
2
1
−cos(x)
2
1
= \frac{ \cos(x) - \sin(x) }{ \cos(x) + \sin(x) }=
cos(x)+sin(x)
cos(x)−sin(x)
Multiplying numerator and denominator by cos(x)-sin(x)
= \frac{ {( \cos(x) - \sin(x) )}^{2} }{( \cos(x) - \sin(x) )( \cos(x) + \sin(x) )}=
(cos(x)−sin(x))(cos(x)+sin(x))
(cos(x)−sin(x))
2
= \frac{ \cos {}^{2} (x) + \sin {}^{2} (x) - 2 \sin(x) \cos(x) }{ \cos {}^{2} (x)- \sin {}^{2} (x) }=
cos
2
(x)−sin
2
(x)
cos
2
(x)+sin
2
(x)−2sin(x)cos(x)
= \frac{1 - \sin(2x) }{ \cos(2x) }=
cos(2x)
1−sin(2x)
= \frac{1}{ \cos(2x) } - \frac{ \sin(2x) }{ \cos(2x) }=
cos(2x)
1
−
cos(2x)
sin(2x)
= \sec(2x) - \tan(2x)=sec(2x)−tan(2x)
= RHS
Hence Proved
Step-by-step explanation:
Pllzz like my answer ♥️