Math, asked by rowshanara1976, 9 months ago

prove that
cos(45° + A)÷
cos(45º - A) =
sec2A-tan2A​

Answers

Answered by saounksh
13

Step-by-step explanation:

LHS =

 \frac{ \cos(45 + x) }{ \cos(45 - x) }

 =  \frac{ \cos(x)  \cos(45)  - \sin(x) \sin(45)   }{ \cos(x)  \cos(45) +  \sin(x) \sin(45)}

 =  \frac{ \cos(x) \frac{1}{ \sqrt{2} }   -  \cos(x)  \frac{1}{ \sqrt{2} } }{\cos(x) \frac{1}{ \sqrt{2} }    +   \cos(x) \frac{1}{ \sqrt{2} } }

 =  \frac{ \cos(x)  -   \sin(x) }{ \cos(x)  +   \sin(x) }

Multiplying numerator and denominator by cos(x)-sin(x)

 =  \frac{ {( \cos(x)  -  \sin(x) )}^{2} }{( \cos(x)  - \sin(x)  )( \cos(x)  +  \sin(x) )}

 =  \frac{ \cos {}^{2} (x)  +  \sin {}^{2} (x) - 2 \sin(x)  \cos(x)  }{ \cos {}^{2}  (x)- \sin {}^{2} (x)  }

 =  \frac{1 -  \sin(2x) }{ \cos(2x) }

 =  \frac{1}{ \cos(2x) }  -  \frac{ \sin(2x) }{ \cos(2x) }

 =  \sec(2x)  -  \tan(2x)

= RHS

Hence Proved

Answered by ranugautam933
1

Answer:

LHS =

\frac{ \cos(45 + x) }{ \cos(45 - x) }

cos(45−x)

cos(45+x)

= \frac{ \cos(x) \cos(45) - \sin(x) \sin(45) }{ \cos(x) \cos(45) + \sin(x) \sin(45)}=

cos(x)cos(45)+sin(x)sin(45)

cos(x)cos(45)−sin(x)sin(45)

= \frac{ \cos(x) \frac{1}{ \sqrt{2} } - \cos(x) \frac{1}{ \sqrt{2} } }{\cos(x) \frac{1}{ \sqrt{2} } + \cos(x) \frac{1}{ \sqrt{2} } }=

cos(x)

2

1

+cos(x)

2

1

cos(x)

2

1

−cos(x)

2

1

= \frac{ \cos(x) - \sin(x) }{ \cos(x) + \sin(x) }=

cos(x)+sin(x)

cos(x)−sin(x)

Multiplying numerator and denominator by cos(x)-sin(x)

= \frac{ {( \cos(x) - \sin(x) )}^{2} }{( \cos(x) - \sin(x) )( \cos(x) + \sin(x) )}=

(cos(x)−sin(x))(cos(x)+sin(x))

(cos(x)−sin(x))

2

= \frac{ \cos {}^{2} (x) + \sin {}^{2} (x) - 2 \sin(x) \cos(x) }{ \cos {}^{2} (x)- \sin {}^{2} (x) }=

cos

2

(x)−sin

2

(x)

cos

2

(x)+sin

2

(x)−2sin(x)cos(x)

= \frac{1 - \sin(2x) }{ \cos(2x) }=

cos(2x)

1−sin(2x)

= \frac{1}{ \cos(2x) } - \frac{ \sin(2x) }{ \cos(2x) }=

cos(2x)

1

cos(2x)

sin(2x)

= \sec(2x) - \tan(2x)=sec(2x)−tan(2x)

= RHS

Hence Proved

Step-by-step explanation:

Pllzz like my answer ♥️

Similar questions