Prove that cos^4a- sin^4a +1 = 2cos^2a
Answers
Answered by
1
Answer:
cos^4a- sin^4a +1 = 2cos^2a
LHS:
(cos²a)² - (sin²a)² +1
= (cos²a + sin²a) (cos²a-sin²a) + 1
= 1(cos²a-sin²a) + 1
= cos²a - (1- cos²a)+ 1
= cos²a - 1 + cos²a+ 1
= 2 cos²a = RHS
Hope this helps. Happy learning!!!
Similar questions