Prove that cos 4x = 1 - 8sin²xcos²x
Answers
Answered by
7
Here is your answer.......
Attachments:
Answered by
7
heya...
here is ua answer:
cos4x=cos2(2x)=cos^2(2x)-sin^2(2x)
=[cos^2(x)-sin^2(x)]^2-(2sinx cosx)^2
=[cos^4(x)+sin^4(x)-2cos^(x)sin^2(x)]-[4sin^2(x)cos^2(x)]
=cos^4(x)+sin^4(x)-6cos^2(x)sin^2(x)
=[cos^4(x)+sin^4(x)+2cos^2(x)cos^2(x)]-[8cos^2(x)sin^2(x)]
=[cos^2(x)+sin^2(x)]^2 - 8cos^2(x)sin^2(x)
= (1)^2 - 8sin^2(x)cos^2(x)
= 1- 8sin^2(x)cos^2(x)
HENCE PROOVED
USED FORMULAE
cos2x=cos^2(x)-sin^2(x)
Sin2x=2sinx cosx
(a+b)^2=a^2+b^2+2ab
hope it helps..!!
Anonymous:
hello
Similar questions