Prove that cos 4x + cos 3x + cos2x÷
sin 4x + sin 3x + sin 2x
= cot3x
Answers
Answered by
2
Answer:
LHS = RHS
check pic
Explanation:
sin X = cos (90- X)
cos X = sin (90-X)
Attachments:
Answered by
49
Question :-- Prove that (cos 4x + cos 3x + cos2x) / (sin 4x + sin 3x + sin 2x) = cot3x
Formula used :-
- cosC + cosD =2*cos[(C+D)/2)]*cos[(C-D)/2)].
- sinC + sinD=2*sin[(C+D)/2)]*cos[(C-D)/2)].
- CosA/sinA = cotA .
Solution :-
using the above told formula in both Numerator and denominator of LHS in 4x and 2x parts , we get,
→ (cos4x+cos2x+cos3x)/(sin4x+sin2x+sin3x)
→ [2cos3x.cosx+cos3x]/[2sin3x.cosx+sin3x]
→ [cos3x(2cosx+1)]/[sin3x(2cosx+1)]
→ (cos3x) / (sin3x)
→ cot3x
✪✪ Hence Proved ✪✪
Similar questions