Prove that cos 510 degree cos 330 degree + sin 390 degree cos 120 degree - 1
Answers
Answered by
1
Answer:
Step-by-step explanation:
) cos 510 = cos ( 360 + 150 )
= Cos 150
= Cos ( 180 - 30 )
= - cos 30°
2 ) cos 330° = cos ( 360 - 30 )
= Cos 30
3 ) sin 390 = sin( 360 + 30 )
= Sin 30
4 ) cos 120 = cos ( 90 + 30 )
= - sin 30°
Now ,
Cos 510 cos 330 + sin390 cos 120
= ( -cos 30°)(cos 30°)+(sin30°)(-sin30°)
= - cos² 30° - sin² 30°
= - ( cos² 30° + sin² 30° )
= -1
Answered by
71
LHS =cos (570)sin (510) + sin (- 330)cos (- 390)
= cos (570) sin (510) + [ – sin (330) ]cos (390) [ because sin( – x ) = – sin x and cos( – x ) = cos x ]
= cos (570)sin(510) – sin (330)
= cos (90 * 6 + 30) sin (90 * 5 + 60) – sin (90 * 3 + 60) cos (90 * 4 + 30)
= – cos (30) cos (60) – [ – cos (60) ] cos (30)
= – cos (30) cos (60) + cos (30) sin (60)
= -1
Hope it's Helpful.....:)
Similar questions