Math, asked by prakasanengr3984, 1 year ago

Prove that cos 55° + cos 65° + cos 175° = 0.

Answers

Answered by MaheswariS
90

Answer:

0


Step-by-step explanation:



Formula used:


cosC + cosD

= 2 cos((C+D)/2) cos((C-D)/2)




cos 55° + cos 65° + cos 175°


= cos 55° + (cos 65° + cos 175°)


= cos 55° +

2 cos((65° + 175° )/2) cos((65° -175° )/2)


= cos 55° + 2 cos(120° ) cos(-55°)


= cos 55° + 2 (-1/2 ) cos(-55°)


= cos 55° - cos55°


= 0








Answered by Anonymous
116

cos 55° + cos 65° + cos 175° = 0

 {cos55}^{0} + 2.cos( \frac{65 + 175}{2} ).cos( \frac{175 - 65}{2})

cos {55}^{0}  + 2.cos( \frac{240}{2} ).cos( \frac{110}{2} )

cos {55}^{0}  + 2.cos {120}^{0}. cos {55}^{0}  \\\\\bf{By \: taking \: (cos {55}^{0} )as \: common}

cos {55}^{0}  (1 + 2.cos {120}^{0})

cos {55}^{0} (1 + 2( -  \frac{  1}{2}))

cos {55}^{0} (0) = 0

= RHS

\bf{Identities\:used:-}\\\\CosC+CosD=2.Cos\frac{C+D}{2}.Cos\frac{C-D}{2}\\\\Cos{120}^{0}=-\frac{1}{2}

Similar questions