Math, asked by akshatjingar, 3 months ago

Prove That :- cos^6 0 + sin^6 0 = 1 - 3 sin^2 o cos^2 0​

Answers

Answered by mathdude500
1

Given Question Correct Statement :-

\tt \:  Prove  \: that \:  {cos}^{6} x +  {sin}^{6} x = 1 - 3 {sin}^{2} x \:  {cos}^{2} x

─━─━─━─━─━─━─━─━─━─━─━─━─

Identities used :-

 \boxed{\tt \:  1. \:  {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y)}

 \boxed{\tt \:  2. \:  {sin}^{2} x +  {cos}^{2} x = 1}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \:  ⟼ \: Consider  \: LHS

\tt \:  ⟼ \:  {cos}^{6} x +  {sin}^{6} x

\tt \:   =  \:  {( {cos}^{2}x) }^{3}  +   {( {sin}^{2}x) }^{3}

\tt \:   =   {\bigg( {cos}^{2} x +  {sin}^{2}x  \bigg)}^{3}  - 3 {cos}^{2} x \:  {sin}^{2} x( {cos}^{2} x +  {sin}^{2} x)

\tt \:   =  {(1)}^{3}  - 3 {sin}^{2} x {cos}^{2} x(1)

\tt \:   = 1 \:  -  \: 3 \:  {cos}^{2} x  \: {sin}^{2} x

\tt\implies \:➦ LHS = RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions