Math, asked by iqrafatima37, 9 months ago

Prove that cos(60°-30°) =cos60°cos30°+sin60°sin30°

Answers

Answered by alokkumar5184
4

Answer:

it can be solve using the formula:-cos(A-B)=cosAcosB-sinAsinB

Answered by harendrachoubay
19

\cos(60-30) =\cos 60\cos30+\sin60\sin30, proved.

Step-by-step explanation:

Prove that \cos(60-30) =\cos 60\cos30+\sin60\sin30.

L.H.S. =\cos(60-30)

= \cos 30

= \dfrac{\sqrt{3}}{2}  [Since, \cos 30 = \dfrac{\sqrt{3}}{2}]

R.H.S. = \cos 60\cos30+\sin60\sin30

= \cos (60-30)

Using the trigonometric identity,

\cos(A-B) =\cos A\cos B+\sin A\sin B

= \cos 30

= \dfrac{\sqrt{3}}{2}  [Since, \cos 30 = \dfrac{\sqrt{3}}{2}]

∵ L.H.S. = R.H.S. = \dfrac{\sqrt{3}}{2}, proved.

Thus, \cos(60-30) =\cos 60\cos30+\sin60\sin30, proved.

Similar questions