Math, asked by salviraju2565, 10 months ago

Prove that ,Cos(60°+A)+cos(60°-A)-cosA=0

Answers

Answered by MaheswariS
7

\underline{\textsf{To prove:}}

\mathsf{cos(60^{\circ}+A)+cos(60^{\circ}-A)-cosA=0}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{cos(60^{\circ}+A)+cos(60^{\circ}-A)-cosA}

\textsf{Using the identities}

\boxed{\mathsf{cos(A+B)=cosA\,cosB-sinA\,sinB}}

\boxed{\mathsf{cos(A-B)=cosA\,cosB+sinA\,sinB}}

\mathsf{=cos60^{\circ}\,cosA-sin60^{\circ}\,sinA+cos60^{\circ}\,cosA+sin60^{\circ}\,sinA-cosA}

\mathsf{=2\,cos60^{\circ}\,cosA-cosA}

\mathsf{=2(\dfrac{1}{2})\,cosA-cosA}

\mathsf{=cosA-cosA}

\mathsf{=0}

\implies\boxed{\mathsf{cos(60^{\circ}+A)+cos(60^{\circ}-A)-cosA=0}}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Similar questions