Prove that
Cos^6A - Sin^6A = Cos 2A (1 - 1/4 Sin^2 2A)
Answers
Answered by
3
=> cos2a)3 – (sin2a)3
=> (cos2a – sin2a )(cos4a + sin4a + cos2a*sin2a)
=> (cos2a)(1 – 2 cos2a*sin2a + cos2a*sin2a)
= > (cos2a)(1 – cos2a*sin2a )
=> (cos2a)(1 – 4cos2a*sin2a/4 )
= > cos2a(1-1/4sin22a)
=> (cos2a – sin2a )(cos4a + sin4a + cos2a*sin2a)
=> (cos2a)(1 – 2 cos2a*sin2a + cos2a*sin2a)
= > (cos2a)(1 – cos2a*sin2a )
=> (cos2a)(1 – 4cos2a*sin2a/4 )
= > cos2a(1-1/4sin22a)
Answered by
1
here is your proof mark it as brainliest
Attachments:
Similar questions