Math, asked by hemantchouhan2004, 1 year ago

prove that cos 7π/12+cosπ/12=sin5π\12-sinπ/12​

Answers

Answered by MaheswariS
1

Answer:

\bf{cos\frac{7\pi}{12}+cos\frac{\pi}{12}=\bf{sin\frac{5\pi}{12}-sin\frac{\pi}{12}}

Step-by-step explanation:

Prove that cos 7π/12+cosπ/12=sin5π\12-sinπ/12​

\bf{cos\frac{7\pi}{12}+cos\frac{\pi}{12}}

=2\:cos(\frac{\frac{7\pi}{12}+\frac{\pi}{12}}{2})\:cos(\frac{\frac{7\pi}{12}-\frac{\pi}{12}}{2})

=2\:cos(\frac{\frac{8\pi}{12}}{2})\:cos(\frac{\frac{6\pi}{12}}{2})

=2\:cos(\frac{4\pi}{12})\:cos(\frac{3\pi}{12})

=2\:cos\frac{\pi}{3}\:cos\frac{\pi}{4}

=2(\frac{1}{2})(\frac{1}{\sqrt2})

=\frac{1}{\sqrt2}..........(1)

\bf{sin\frac{5\pi}{12}-sin\frac{\pi}{12}}

=2\:cos(\frac{\frac{5\pi}{12}+\frac{\pi}{12}}{2})\:sin(\frac{\frac{5\pi}{12}-\frac{\pi}{12}}{2})

=2\:cos(\frac{\frac{6\pi}{12}}{2})\:sin(\frac{\frac{4\pi}{12}}{2})

=2\:cos(\frac{3\pi}{12})\:sin(\frac{2\pi}{12})

=2\:cos\frac{\pi}{4}\:sin\frac{\pi}{6}

=2(\frac{1}{\sqrt2})(\frac{1}{2})

=\frac{1}{\sqrt2}.........(2)

From (1) and (2)

\bf{cos\frac{7\pi}{12}+cos\frac{\pi}{12}=\bf{sin\frac{5\pi}{12}-sin\frac{\pi}{12}}

Answered by RoshanMinz1
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions