Math, asked by sneharaju67, 2 months ago

prove that cos 7 x +cos 5x ÷sin7x - sin5x =cotx​

Answers

Answered by Nova2021
1

Answer:

 \frac{cos \: 7x + cos \: 5x}{sin \: 7x  -  sin \: 5x}  = cotx

Step-by-step explanation:

 \frac{cos \: 7x + cos \: 5x}{sin \: 7x  -  sin \: 5x}  = cotx \\  \\ on \: solving \:  \: cos 7x+cos  5x \:   \:  \: separately \\ using \:  cosx+cosy = 2cos \frac{x + y}{2}  \: cos\frac{x  -  y}{2} \\ put \: x = 7x \:  \: and \:  \: y = 5x \\  = 2cos (\frac{7x + 5x}{2})  \: cos(\frac{7x  -  5x}{2} )\\ =  2cos (\frac{12x}{2})  \: cos(\frac{2x}{2} ) \\  = 2 \: cos \:6x \:  cosx \\  \\ on \: solving \:  \: sin 7x - sin 5x \:   \:  \: separately \\ using \:  sinx+siny = 2cos \frac{x + y}{2}  \: sin\frac{x  -  y}{2} \\ put \: x = 7x \:  \: and \:  \: y = 5x \\  = 2cos (\frac{7x + 5x}{2})  \: sin(\frac{7x  -  5x}{2} )\\ =  2cos (\frac{12x}{2})  \: sin(\frac{2x}{2} ) \\  = 2 \: cos \:6x \:  sinx \\  \\ now \:  \:  \frac{cos \: 7x + cos \: 5x}{sin \: 7x  -  sin \: 5x}  =  \frac{2 \: cos \:6x \:  cosx }{2 \: cos \:6x \:  sinx }  \\  =  \frac{cosx}{sinx}  \\  = cotx \\ hence \: proved

=> Follow Me

Answered by cheruvunagalaxmi
1

Answer:

cos7x + cos5x ÷ sin7x - sin5x

= 2 cos([7-5]/2)x × cos([7+5]/2)x ÷ 2cos([7+5]/2)x × sin([7-5]/2)x

{•.• cosa + cosb = 2cos([a-b]/2) × cos([a+b]/2)

sina + sinb = 2cos([a+b]/2) × sin([a-b]/2) }

=cos(2/2)x × cos(12/2)x / cos(12/2)x × sin(2/2)x

= cos(2/2)x / sin(2/2)x

= cotx

Similar questions