Math, asked by ojaswipanpaliya, 18 days ago

Prove that cos 72°. cos18°- sin 72°.sin 18°=0​

Answers

Answered by ZaraAntisera
2

Answer:

\mathrm{\cos \left(72^{\circ \:}\right)\cos \left(18^{\circ \:}\right)-\sin \left(72^{\circ \:}\right)\sin \left(18^{\circ \:}\right)=0 \ True}

Step-by-step explanation:

\cos \left(72^{\circ \:}\right)\cos \left(18^{\circ \:}\right)-\sin \left(72^{\circ \:}\right)\sin \left(18^{\circ \:}\right)

\mathrm{Use\:the\:following\:identity}:\quad \cos \left(s\right)\cos \left(t\right)-\sin \left(s\right)\sin \left(t\right)=\cos \left(s+t\right)

\cos \left(72^{\circ \:}\right)\cos \left(18^{\circ \:}\right)-\sin \left(72^{\circ \:}\right)\sin \left(18^{\circ \:}\right)=\cos \left(72^{\circ \:}+18^{\circ \:}\right)

=\cos \left(72^{\circ \:}+18^{\circ \:}\right)

=\cos \left(90^{\circ \:}\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(90^{\circ \:}\right)=0

=0

\mathrm{Hence\ Proved}

\mathrm{ZARA}

Similar questions