Math, asked by priyadurga2001, 1 day ago

prove that cos 8theta=128 cos^8 theta-256 cos^6 theta 2+160 cos^4theta-32cos^theta+1​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider

\rm \:  {cos}8\theta  \\

can be rewritten as

\rm \:  =  \: cos2(4\theta ) \\

We know,

\boxed{ \rm{ \:cos2x =  {2cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \:  =  \:  {2cos}^{2}4\theta  - 1 \\

\rm \:  =  \:  2 {(cos4\theta )}^{2}   - 1 \\

\rm \:  =  \:  2 {[(cos2(2\theta )]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {2cos}^{2}2\theta  - 1]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {2(cos2\theta )}^{2}  - 1]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {2( {2cos}^{2}\theta  - 1)}^{2}  - 1]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {2( {4cos}^{4}\theta  + 1 - {4cos}^{2}\theta)}  - 1]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {{8cos}^{4}\theta  + 2 - {8cos}^{2}\theta}  - 1]}^{2}   - 1 \\

\rm \:  =  \:  2 {[ {{8cos}^{4}\theta  + 1 - {8cos}^{2}\theta}]}^{2}   - 1 \\

\rm \:  = 2( {64cos}^{8}\theta  + 1 +  {64cos}^{4}\theta  + 16 {cos}^{4}\theta -  {16cos}^{2}\theta  -  128 {cos}^{6}\theta) - 1  \\

\rm \:  = 2( {64cos}^{8}\theta  + 1 +  {80cos}^{4}\theta -  {16cos}^{2}\theta  -  128 {cos}^{6}\theta) - 1  \\

\rm \:  = {128cos}^{8}\theta  + 2 +  {160cos}^{4}\theta -  {32cos}^{2}\theta  -  256 {cos}^{6}\theta - 1  \\

\rm \:  = {128cos}^{8}\theta +  {160cos}^{4}\theta -  {32cos}^{2}\theta  -  256 {cos}^{6}\theta  +  1  \\

can be re-arranged as

\rm \:  = {128cos}^{8}\theta - 256 {cos}^{6}\theta+{160cos}^{4}\theta-{32cos}^{2}\theta+1  \\

Hence,

\boxed{\rm cos8\theta = {128cos}^{8}\theta - 256 {cos}^{6}\theta+{160cos}^{4}\theta-{32cos}^{2}\theta+1}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered} { \boxed{ \begin{array}{c} \underline{\underline{ \color{orange} \text{Additional \: lnformation}}} \\&  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Answered by manimani37869
1

Step-by-step explanation:

prove that cos 8theta=128 cos^8 theta-256 cos^6 theta 2+160 cos^4theta-32cos^theta+1

Similar questions