Math, asked by kkchandu1437, 1 year ago

prove that cos 9 degrees + sin 9 degrees by cos 9 degrees minus sin 9 degree equals to cos 36°​

Answers

Answered by YameshPant
11

Step-by-step explanation:

 \frac{ \cos(9) +  \sin(9)  }{ \cos(9  )   - \sin(9) }  \\  =  \frac{ \cos(9) +  \sin(9)  }{ \cos(9  )   - \sin(9) }  \times  \frac{ \cos(9) +  \sin(9)  }{ \cos(9  )    + \sin(9) }  \\  =   \frac{ { (\cos(9)  +  \sin(9)) }^{2}  }{ { \cos(9) }^{2} -   { \sin(9) }^{2}   }  \\  =   \frac{{ \cos(9) }^{2}  +  { \sin(9) }^{2}  + 2 \cos(9)  \sin(9) }{ \cos(2 \times 9) }  \\  =  \frac{1 +  \sin(2 \times 9) }{ \cos(18) }  \\  \frac{1 +  \sin(18) }{ \cos(18) }  \\  =  \cos(2 \times 18)  \\  =  \cos(36)

Similar questions