prove that cos 9° + sin 9° / cos 9° - sin 9° = cot 36°
Answers
Answered by
2
Answer:
To prove : \frac{\cos 9+\sin 9}{\cos 9-\sin 9}=\cot 36
cos9−sin9
cos9+sin9
=cot36
Proof :
Take LHS,
\frac{\cos 9+\sin 9}{\cos 9-\sin 9}
cos9−sin9
cos9+sin9
Take cos 9 common,
=\frac{1+\frac{\sin 9}{\cos 9}}{1-\frac{\sin 9}{\cos 9}}=
1−
cos9
sin9
1+
cos9
sin9
=\frac{1+\tan 9}{1-\tan 9}=
1−tan9
1+tan9
=\frac{\tan 45+\tan 9}{1-\tan 9\tan 45}=
1−tan9tan45
tan45+tan9
We know formula,
\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}tan(A+B)=
1−tanAtanB
tanA+tanB
Here, A=45 and B=9
=\tan(45+9)=tan(45+9)
=\tan(54)=tan(54)
=\tan(90-36)=tan(90−36)
We know, \tan (90-\theta)=\cot \thetatan(90−θ)=cotθ
=\cot 36=cot36
=RHS=RHS
Answered by
2
Answer:
By this u understand properly
Attachments:
Similar questions