Math, asked by Geeezzzzzz, 1 day ago

Prove that: cos 9°+sin 9° /cos 9° - sin 9° = tan 37°

Answers

Answered by anindyaadhikari13
3

Correct Question:

Prove that:

 \rm \hookrightarrow \dfrac{ \cos(9{}^{\circ}) +  \sin(9{}^{\circ})  }{ \cos(9{}^{\circ})  -  \sin(9{}^{\circ}) }  =  \tan(54{}^{\circ})

Solution:

Taking Left Hand Side, we get:

 \rm = \dfrac{ \cos(9{}^{\circ}) +  \sin(9{}^{\circ})  }{ \cos(9{}^{\circ})  -  \sin(9{}^{\circ}) }

Dividing both numerator and denominator by cos(9°), we get:

 \rm = \dfrac{  \frac{1}{ \cos(9{}^{\circ}) } \{\cos(9{}^{\circ}) +  \sin(9{}^{\circ}) \}  }{  \frac{1}{ \cos(9{}^{\circ}) } \{ \cos(9{}^{\circ})  -  \sin(9{}^{\circ}) \} }

 \rm = \dfrac{1 +  \tan(9{}^{\circ})  }{1 - \tan(9{}^{\circ}) }

Can be written as:

 \rm = \dfrac{1 +  \tan(9{}^{\circ})  }{1 - 1 \times \tan(9{}^{\circ}) }

1 can be written as tan(45°). So, we get:

 \rm = \dfrac{ \tan(45{}^{\circ})  +  \tan(9{}^{\circ})  }{1 -  \tan(45{}^{\circ})  \times \tan(9{}^{\circ}) }

We know that:

 \rm \longrightarrow \tan( \alpha   + \beta ) = \dfrac{ \tan( \alpha )  +  \tan( \beta) }{1 -  \tan( \alpha ) \tan( \beta )  }

Using this result, we get:

 \rm =  \tan(45{}^{\circ} + 9{}^{\circ})

 \rm =  \tan(54{}^{\circ})

 \rm = RHS

Therefore:

 \rm \hookrightarrow \dfrac{ \cos(9{}^{\circ}) +  \sin(9{}^{\circ})  }{ \cos(9{}^{\circ})  -  \sin(9{}^{\circ}) }  =  \tan(54{}^{\circ})

Hence Proved..!!

Additional Information:

 \rm1. \: \sin(\alpha+\beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)

 \rm2.\: \cos(\alpha+\beta) = \cos(\alpha) \cos(\beta) -  \sin(\alpha) \sin(\beta)

 \rm 3.\: \tan(\alpha+\beta) = \dfrac{ \tan( \alpha) + \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta ) }

 \rm 4. \: \sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) -  \cos(\alpha) \sin(\beta)

 \rm 5.\: \cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)

 \rm 6.\: \tan(\alpha - \beta) = \dfrac{ \tan( \alpha) - \tan( \beta ) }{1 + \tan( \alpha ) \tan( \beta ) }

Similar questions