Math, asked by indu555, 3 months ago

prove that cos(90- theta)- sin (90-theta) ( cosec theta- sin theta) ( tan theta+ cot theta) = 1​

Answers

Answered by albindshibu
1

Step-by-step explanation:

Answer and explanation:

To prove : \frac{\cos(90-\theta)\sec (90-\theta)\tan \theta }{\csc (90-\theta)\sin (90-\theta)\cot (90-\theta)}+\frac{\tan (90-\theta)}{\cot \theta}=2

csc(90−θ)sin(90−θ)cot(90−θ)

cos(90−θ)sec(90−θ)tanθ

+

cotθ

tan(90−θ)

=2

Proof :

Taking LHS,

=\frac{\cos(90-\theta)\sec (90-\theta)\tan \theta }{\csc (90-\theta)\sin (90-\theta)\cot (90-\theta)}+\frac{\tan (90-\theta)}{\cot \theta}=

csc(90−θ)sin(90−θ)cot(90−θ)

cos(90−θ)sec(90−θ)tanθ

+

cotθ

tan(90−θ)

Applying property of trigonometry,

\begin{gathered}\sin (90-\theta)=\cos \theta\\\cos(90-\theta)=\sin\theta\\\sec (90-\theta)=\csc\theta\\\csc (90-\theta)=\sec\theta\\\cot (90-\theta)=\tan\theta\\\tan (90-\theta)=\cot\theta\end{gathered}

sin(90−θ)=cosθ

cos(90−θ)=sinθ

sec(90−θ)=cscθ

csc(90−θ)=secθ

cot(90−θ)=tanθ

tan(90−θ)=cotθ

=\frac{\sin\theta\csc\theta\tan \theta }{\sec\theta\cos\theta\tan\theta}+\frac{\cot\theta}{\cot \theta}=

secθcosθtanθ

sinθcscθtanθ

+

cotθ

cotθ

We know, \csc\tehta=\frac{1}{\sin\theta},\ \sec\tehta=\frac{1}{\cos\theta}csc\tehta=

sinθ

1

, sec\tehta=

cosθ

1

=\frac{\sin\theta\times \frac{1}{\sin\theta}\times \tan \theta }{\frac{1}{\cos\theta}\times \cos\theta\times \tan\theta}+\frac{\cot\theta}{\cot \theta}=

cosθ

1

×cosθ×tanθ

sinθ×

sinθ

1

×tanθ

+

cotθ

cotθ

=\frac{1}{1}+1=

1

1

+1

=1+1=1+1

=2=2

LHS=RHS

Hence proved

Answered by kushal567
0

Answer:

7tctudrtuxursurs7474dutdutsuc7txy ¥^"¥_"£^'£%"%£"£%$¥_$¥%$£%"%£$igcitdigcticticitditd58e58r85e58eiteixigcv

Similar questions