Math, asked by barbie55, 1 year ago

prove that Cos A /1+sin A +1+sin A/cos A = 2 sec A

Answers

Answered by purvisri02
59
LHS = cosA / 1+sinA   +   1+sinA / cosA
        =(cos^2A+1+sin^2A+2sinA )  /cosA(1+sinA)
        = (2+2sinA)   /  cosA(1+sinA)
        = {2(1+sinA)}  /  cosA (1+sinA)
        = 2 / cosA
        = 2secA
RHS = 2secA
           therefore ,  LHS = RHS

barbie55: the option is not available
purvisri02: but first you have to take the photo of it in your phone
purvisri02: the sign is there
barbie55: hmmm ok i will check
barbie55: thnxs
purvisri02: I am using from laptop and it is there
barbie55: ok
barbie55: i m using from tablet
purvisri02: it might be there
barbie55: ok
Answered by ColinJacobus
41

Answer:  The proof is done below.

Step-by-step explanation:  We are given to prove the following :

\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A.

We ill be using the following trigonometric identities:

(i)~\sin^2A+\cos^2A=1,\\\\(ii)~\sec A=\dfrac{1}{\cos A}.

We have

L.H.S.\\\\\\=\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}\\\\\\=\dfrac{\cos^2A+(1+\sin^2A)}{(1+\sin A)\cos A}\\\\\\=\dfrac{\cos^2A+1+2\sin A+\sin^2A}{(1+\sin A)\cos A}\\\\\\=\dfrac{1+1+2\sin A}{(1+\sin A)\cos A}\\\\\\=\dfrac{2(1+\sin A)}{(1+\sin A)\cos A}\\\\\\=\dfrac{2}{\cos A}\\\\=2\sec A\\\\=R.H.S.

Thus, we get

\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A.

Hence proved.

Similar questions