Math, asked by ananyaharitwal9, 3 months ago

prove that
Cos A/1-Tan A - Sin A / 1-Cot A
= Sin A - Cos A

Answers

Answered by BrainlyRish
4

Appropriate Question :

  • Prove that : \longmapsto \:\:\bf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : \longmapsto \:\:\bf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\

Exigency To Prove : \longmapsto \:\:\sf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \quad \bigstar\:\: \:\:\bf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\

Here ,

  • \longmapsto \:\bf{L.H.S}\:=\:\sf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A }  \\ \\ \\
  • \longmapsto \:\bf{R.H.S}\:=\:\sf Sin A + Cos A  \\ \\ \\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \:  \: Given \: L.H.S \::}}\\

\longmapsto \:\bf{L.H.S}\:=\:\sf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos A }{1 - Tan A } - \dfrac{Sin A }{1- Cot A }  \\ \\ \\

\dag\:\it{As,\:We\:know\:that\::}\\\\

  •  Tan A = \dfrac{Sin A }{Cos A}\\\\

:\implies \:\:\sf \dfrac{ Cos A }{1 - \dfrac{Sin A }{CosA} } - \dfrac{Sin A }{1- Cot A }  \\ \\ \\

\dag\:\it{As,\:We\:know\:that\::}\\\\

  •  Cot A = \dfrac{Cos A }{Sin A}\\\\

:\implies \:\:\sf \dfrac{ Cos A }{1 - \dfrac{Sin A }{CosA} } - \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos A }{1 - \dfrac{Sin A }{CosA} } - \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos A }{ \dfrac{Cos A - Sin A  }{CosA} } - \dfrac{Sin A }{ \dfrac{Sin A - Cos A }{Sin A } }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos A \times Cos A }{ Cos A - Sin A   } - \dfrac{Sin A \times Sin A }{ Sin A - Cos A  }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos^2 A  }{ Cos A - Sin A   } - \dfrac{Sin^2 A  }{ Sin A - Cos A  }  \\ \\ \\

:\implies \:\:\sf \dfrac{ Cos^2 A  - Sin^2 A }{ Cos A - Sin A   }  \\ \\ \\

\dag\:\it{As,\:We\:know\:that\::}\\\\

  • a² - b² = ( a + b ) ( a - b )

:\implies \:\:\sf \dfrac{ (Cos A  - Sin A)(Cos A + Sin A ) }{ Cos A - Sin A   }  \\ \\ \\

:\implies \:\:\sf \dfrac{ \cancel{(Cos A  - Sin A)}(Cos A + Sin A ) }{\cancel {Cos A - Sin A }  }  \\ \\ \\

:\implies \:\:\bf  L.H.S =  (Cos A + Sin A ) \\ \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Therefore,

  • \longmapsto \:\bf{L.H.S}\:=\:\sf Sin A + Cos A  \\ \\ \\
  • \longmapsto \:\bf{R.H.S}\:=\:\sf Sin A + Cos A  \\ \\ \\

As, we can See that ,

  • L.H.S = R.H.S

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Proved ! \:}}}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by mathdude500
2

\large\underline{\bold{Correct \:Question - }}

 \sf \: Prove \:  that \: \dfrac{cosA}{1 - tanA}   +  \dfrac{sinA}{1 - cotA}  = sinA \:  +  \: cosA

\large\underline{\sf{Solution-}}

Consider LHS,

 \sf \: \dfrac{cosA}{1 - tanA}   +  \dfrac{sinA}{1 - cotA}

We know,

 \boxed{ \bf{ \: tanA = \dfrac{sinA}{cosA} }}

and

 \boxed{ \bf{ \: cotA =  \dfrac{cosA}{sinA} }}

So,

  • LHS can be rewritten as

 \sf \:  =  \: \dfrac{cosA}{1 - \dfrac{sinA}{cosA} }   +  \dfrac{sinA}{1 - \dfrac{cosA}{sinA} }

 \sf \:  =  \: \dfrac{cosA}{\dfrac{cosA - sinA}{cosA} }   +  \dfrac{sinA}{\dfrac{sinA - cosA}{sinA} }

 \sf \:  =  \: \dfrac{ {cos}^{2}A }{cosA - sinA}  + \dfrac{ {sin}^{2} A}{sinA - cosA}

 \sf \:  =  \: \dfrac{ {cos}^{2}A }{cosA - sinA}   -  \dfrac{ {sin}^{2} A}{cosA - sinA}

 \sf \:  =  \: \dfrac{ {cos}^{2}A -  {sin}^{2}A  }{cosA - sinA}

 \sf \:  =  \: \dfrac{(cosA + sinA) \cancel{(cosA - sinA)}}{ \cancel{(cosA - sinA)}}  \:  \:  \{  \because{a}^{2}  -  {b}^{2}  = (a + b)(a - b) \}

 \sf \:  =  \: cosA + sinA

 \sf \:  =  \: RHS

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions