Math, asked by mokshu944164, 17 days ago

Prove that : COS A /1-tan A+ sin A/ 1-cot A =sin A+cos A​

Answers

Answered by Anonymous
23

Question:-

 \frac{ \cos( \alpha ) }{1 -  \tan( \alpha ) }  +  \frac{ \sin( \alpha ) }{1 -  \cot( \alpha ) }  =  \sin( \alpha )  +  \cot( \alpha )

To Prove:-

L.H.S=R.H.S

Solution:-

Solving L.H.S

 L.H.S = \frac{ \cos( \alpha ) }{1 -  \tan( \alpha ) }  +  \frac{ \sin( \alpha ) }{1 -  \cot( \alpha ) }

Now We Will Solve the denominator

we know that :-

 \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

and

 \cot( \alpha )  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }

so,

we can also write L.H.S as

 =  > \frac{ \cos( \alpha ) }{ 1-   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  }  +  \frac{ \sin( \alpha )  }{1 -   \frac{ \cos( \alpha ) }{ \sin( \alpha ) } }

Now

 =  > \frac{ \cos( \alpha ) }{  \frac{ \cos( \alpha ) }{ \cos( \alpha ) } -   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  }  +  \frac{ \sin( \alpha )  }{ \frac{ \sin( \alpha ) }{ \sin( \alpha ) } -   \frac{ \cos( \alpha ) }{ \sin( \alpha ) } }

= > \frac{ \cos( \alpha ) }{ \frac{ \cos( \alpha ) -  \sin( \alpha )  }{ \cos( \alpha ) }   }  +  \frac{ \sin( \alpha )  }{ \frac{ \sin( \alpha ) -  \cos( \alpha )  }{ \cos( \alpha ) }  }

= > \frac{ \cos( \alpha ) \times  \cos( \alpha )  }{ \cos( \alpha ) -  \sin( \alpha )     }  +  \frac{ \sin( \alpha )  \times  \sin( \alpha )  }{  \sin( \alpha ) -  \cos( \alpha )    }

= > \frac{ { \cos( \alpha ) }^{2}   }{ \cos( \alpha ) -  \sin( \alpha )     }  +  \frac{  { \sin( \alpha ) }^{2}   }{  \sin( \alpha ) -  \cos( \alpha )    }

= > \frac{ { \cos( \alpha ) }^{2}   }{ \cos( \alpha ) -  \sin( \alpha )     }   - \frac{  { \sin( \alpha ) }^{2}   }{  \ \cos( \alpha )  -  \sin( \alpha )    }

 =  > \frac{ { \cos( \alpha ) }^{2} -  { \sin( \alpha ) }^{2}    }{ \cos( \alpha ) -  \sin( \alpha )    }

we can also write numerator as

 { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}  = ( \cos( \alpha  ) +   \sin( \alpha ) )( \cos( \alpha )  -  \sin( \alpha ) )

Because of third Identity

i.e,

 {x}^{2}  -  {y}^{2}  = (x - y)(x + y)

  =  >  \frac{( \cos( \alpha  ) +   \sin( \alpha ) )( \cos( \alpha )  -  \sin( \alpha ) )}{ \cos( \alpha )  -  \sin( \alpha ) }

  =  >\frac{( \cos( \alpha  )+   \sin( \alpha ) ) \cancel{ ( \cos( \alpha )  -  \sin( \alpha ) )}}{  \cancel{\cos( \alpha )  -  \sin( \alpha ) }}

  =  > \cos( \alpha  )+   \sin( \alpha )

\cos( \alpha  )+   \sin( \alpha ) = \cos( \alpha  )+   \sin( \alpha )

\therefore \: L.H.S=R.H.S

HENCE PROVED

Answered by sparkle10
2

Terms and Conditions

1) If amount is debited from account and if you didnt get any sucess receipt,Please visit payment history in student login to know the status after 15 mins.

2) Use net banking option to avoid more service charge, Net Banking service charge will not exceed Maximum of Rs.25/- per transaction upto Rs.10 lakh.

3) For debit card and credit card 1% to 1.5% of service charge will be charged by your bank for all the transaction for above Rs 2,000/-

4) For Debit card less then Rs.2,000/- will not exceed more than Rs.6/- for each transaction.

5) If amount is debited and if you didn't get any Success receipt. Kindly raise an eMail to [email protected] (With in 4 hours)

mentioning your Reg id ,Transaction date and Amount. Don't try further untill you receive reply from [email protected]

Similar questions