Math, asked by suklakanta71, 8 months ago

Prove that cos A/1-tan A+Sin A/1-cotA=cos A+sin A​

Answers

Answered by Mora22
11

answer

L.H.S. = cos A/1 – tanA + sin A/1 – cot A

= cos A/1 – sin A/cos A + sin A/1 – cos A/sin A

= cos A/(cos A – sin A)/cosA + sin A/(sin A – cos A)/sin A

= cos2 A/cos A – sinA + sin2 A/sinA – cos A

= cos2 A – sin2A/(cos A – sin A)

= (cos A + sin A)(cos A – sin A)/(cos A – sin A)

= cos A + sin A

= R.H.S.

Answered by pulakmath007
27

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

   \displaystyle \:  {{cos}^{2} A-  {sin}^{2}  A} =  \displaystyle \:  {(cos A  + sin A) \: (cos A - sin A) }

2.

 \displaystyle \:  tan A = \frac{sin A}{cos A }

3.

 \displaystyle \:  cot A = \frac{cos A}{sin A }

CALCULATION

 \displaystyle \:  \frac{cos A}{1 - tan A} + \frac{sin A}{1 - cot A}

  \:  = \displaystyle \:  \frac{cos A}{1 -  \frac{sinA}{cos A} } +  \frac{sin A}{1 -  \frac{cosA}{sin A} }

  = \displaystyle \:  \frac{{cos}^{2} A}{cos A - sin A} + \frac{{sin}^{2}  A}{sin A - cos A}

  = \displaystyle \:  \frac{{cos}^{2} A}{cos A - sin A}  -  \frac{{sin}^{2}  A}{cos A - sin A}

  = \displaystyle \:  \frac{{cos}^{2} A-  {sin}^{2}  A}{cos A - sin A}

  = \displaystyle \:  \frac{(cos A  + sin A) \: (cos A - sin A) }{cos A - sin A}

 = cos A  +  sin A

Similar questions