Math, asked by ShrutiSingh11, 1 year ago

prove that cos A / 1+tan A - sin A / 1 + cut A = cos A - sin A

Answers

Answered by atreyee261
1

 l.h.s = \frac{cos \: a}{1 + tan \: a}  -  \frac{sin \: a}{1 + cot \: a}  \\  =  \frac{cos \: a}{1 +  \frac{sin \: a}{cos \: a} }  -  \frac{sin \: a}{1 +  \frac{cos \: a}{sin \: a} }  \\  =  \frac{cos \: a}{ \frac{cos \: a + sin \: a}{cos \: a} }  -  \frac{sin \: a}{ \frac{sin \: a + cos \: a}{sin \: a} }  \\  =  (cos \: a \times \frac{cos \: a}{cos \: a + sin \: a} ) - (sin \: a \times  \frac{sin \: a}{sin \: a + cos \: a}  \\  =  \frac{ {cos}^{2}a }{sin \: a + cos \: a }  -  \frac{  {sin}^{2} a }{sin \: a + cos \: a}  \\  =  \frac{ {cos}^{2}a -  {sin}^{2}a  }{sin \: a + cos \: a}  \\  =  \frac{(cos \: a + sin \: a)(cos \: a - sin \: a)}{sin \: a + cos \: a}  \\  =( cos \: a - sin \: a) = r.h.s
hope this helps ...pls mark it brainliest..
Similar questions