Math, asked by vijayalaxmicherry787, 11 months ago

prove that cos A /1-tan A +sin square A /sin A-cos A = sin A+ cos A​

Answers

Answered by sandy1816
9

Step-by-step explanation:

LHS

cosA/1-tanA+sin²A/sinA-cosA

=cos²A/cosA-sinA+sin²A/sinA-cosA

=cos²A/cosA-sinA-sin²A/cosA-sinA

=cos²A-sin²A/cosA-sinA

=(cosA-sinA)(cosA+sinA)/cosA-sinA

=sinA+cosA

RHS

Answered by Anonymous
4

Consider the provided information.

\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B

Consider the LHS.

\sin^2A\cos^2B-\cos^2A\sin^2B

\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B               (∴\cos^2x=1-\sin^2x)

\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B

\sin^2A-\sin^2B

Hence, proved.

Similar questions