Math, asked by aditi2608, 5 months ago

prove that (cos A/1-tanA) - (sin²A/cosA-sinA) = cos A + sin A​

Answers

Answered by MaIeficent
2

Step-by-step explanation:

\sf\underline{To \: Prove:-}

\sf \dfrac{cosA}{1 - tanA}  -  \dfrac{ {sin}^{2}A }{cosA - sinA}  = cosA + sinA

\sf\underline{Proof:-}

\sf LHS = \dfrac{cosA}{1 - tanA}  -  \dfrac{ {sin}^{2}A }{cosA - sinA}

\sf = \dfrac{cosA}{1 -  \dfrac{sinA}{cosA} }  -  \dfrac{ {sin}^{2}A }{cosA - sinA}

\sf = \dfrac{cosA}{ \dfrac{</p><p>cosA - sinA }{cosA} }  -  \dfrac{ {sin}^{2}A }{cosA - sinA}

\sf = \dfrac{cosA \times cosA}{</p><p>cosA - sinA } -  \dfrac{ {sin}^{2}A }{cosA - sinA}

\sf = \dfrac{cos ^{2} A}{</p><p>cos - sinA } -  \dfrac{ {sin}^{2}A }{cosA - sinA}

\sf = \dfrac{cos ^{2} A}{</p><p>cosA - sinA } -  \dfrac{ { sin}^{2}A }{ cosA - sinA}

\sf = \dfrac{cos ^{2} A - sin^{2}A }{</p><p>cosA -sinA }

\sf = \dfrac{(cos A - sinA) (cos A  + sinA)}{</p><p>cosA -sinA }

\sf = cos A + sinA = RHS

\sf LHS = RHS

\sf \underline{Hence \: Proved}

Similar questions