Math, asked by rumaysha4665, 8 months ago

Prove that : cos A / (1-tanA) + sinA /( 1-cotA) = sinA + cos A ​

Answers

Answered by Anonymous
7

\sf\large\underline\blue{Given:-}

\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-cotA} = sinA + cosA

\sf\large\underline\blue{To\: Prove  :-}

\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-cotA} = sinA + cosA

\sf\large\underline\blue{Formula \: Used :-}

• a² - b² = ( a+b) ( a -b)

\sf\large\underline\blue{Solution :-}

L. H. S

\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-cotA}

=\dfrac{cosA}{1-\dfrac{sinA}{cosA}}+\dfrac{sinA}{\dfrac{cosA}{sinA}}

=\dfrac{cosA}{\dfrac{cosA-sinA}{cosA}}+\dfrac{sinA}{\dfrac{sinA-cosA}{sinA}}

=\dfrac{cos^{2}A}{cosA-sinA}+\dfrac{sin^{2}A}{sinA-cosA}

=\dfrac{(-1) cos^{2}A}{(-1) (cosA-sinA) }+\dfrac{sin^{2}A}{sinA-cosA}

=\dfrac{sin^{2}A-cos^{2}A}{cosA-sinA}

=\dfrac{(sinA+cosA) (\cancel{sinA-cosA}) }{\cancel{sinA-cosA}}

=sinA+cosA

= R. H. S

L.H.S = R.H.S

Hence Proved.

Similar questions