Math, asked by neharidge4, 11 months ago

Prove that cos a a divided by 1 minus tan a Plus sin square A / Sin A minus Cos A is equals to sec a + Cos A

Answers

Answered by rahuljaiswal2002
0

Answer:i think rhs should be sina + cos a

Step-by-step explanation:

Attachments:
Answered by SANDHIVA1974
1

Answer:

\frac{\tan A-\sin A}{\sin^2 A}=\frac{\tan A}{1+\cos A} hence proved.

Step-by-step explanation:

To prove : \frac{\tan A-\sin A}{\sin^2 A}=\frac{\tan A}{1+\cos A}

Proof :

Taking LHS,

LHS=\frac{\tan A-\sin A}{\sin^2 A}

LHS=\frac{\frac{\sin A}{\cos A}-\sin A}{1-\cos^2 A}

LHS=\frac{\frac{\sin A-\sin A\cos A}{\cos A}}{1-\cos^2 A}

LHS=\frac{\sin A(1-\cos A)}{\cos A(1+\cos A)(1-\cos A)}

LHS=\frac{\sin A}{\cos A(1+\cos A)}

LHS=\frac{\frac{\sin A}{\cos A}}{\frac{\cos A(1+\cos A)}{\cos A}}

LHS=\frac{\tan A}{1+\cos A}

LHS=RHS

Hence proved.

#Learn more

Similar questions