Prove that:cos(A+B+C)=cosA.cosB.cosC(1-tanB.tanC-tanC.tanA-tanA.tanC)
Answers
Answer:
Step-by-step explanation:
To Prove :-
cos(A + B + C) = cosA.cosBcosC(1 - tanB.tanC - tanC.tanA - tanA.tanC)
Formula Required :-
cos(x + y) = cosxcosy - sinxsiny
sin(x + y) = sinxcosy + sinycosx
sinx/cosx = tanx
Solution :-
Taking L.H.S :-
= cos(A + B + C)
= cos(A + (B + C))
= cosAcos(B + C) - sinAsin(B + C)
= cosA( cosBcosC - sinBsinC) - sinA(sinBcosC + sinCcosB)
= cosAcosBcosC - cosAsinBsinC - sinAsinBcosC - sinAcosBsinC
Taking 'cosAcosBcosC' as common :-
= cosAcosBcosC(1 - tanBtanC - tanAtanB - tanAtanC)
[ ∴ sinx/cosx = tanx]
= R.H.S
Hence Proved
To Prove :- cos(A + B + C) = cosA.cosB.cosC(1 - tanB.tanC - tanA.tanB - tanA.tanC) ?
Solution :-
taking LHS,
→ cos(A + B + C)
- taking (B + C) together,
→ cos[A + (B + C)]
- using cos(X + Y) = cos X * cos Y - sin X * sin Y
→ cos A * cos (B + C) - sin A * sin (B + C)
- again , using same formula,
→ cos A(cos B * cos C - sin B * sin C) - sin A * sin (B + C)
- using sin(X + Y) = sin X * cos Y + cos X * sin Y
→ cos A * cos B * cos C - cos A * sinB * sin C - sin A(sin B * cos C + cos B * sin C)
→ cos A * cos B * cos C - cos A * sinB * sin C - sin A * sin B * cos C - sin A * cos B * sin C
- taking cos A * cos B * cos C common now,
→ cos A * cos B * cos C[ 1 - (sin B * sin C/cos B * cos C) - (sin A * sin B/cos A * cos B) - (sin A * sin C/cos A * cos C)]
finally,
- using sin X / cos X = tan X .
→ cos A * cos B * cos C[ 1 - tan B * tan C - tan A * tan B - tan A * tan C ] = RHS (Proved) .
Learn more :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532
help me with this trig.
https://brainly.in/question/18213053