Math, asked by vedanthdev147, 5 months ago

prove that cos(A+B)COS(A-B)=cos²A-sin²B​

Answers

Answered by sherasyed0
1

Answer:

hi mate here is ur solution and mark me as brain listed

Attachments:
Answered by Seafairy
184

Given :

\cos(A+B)\cos(A-B)=\cos^2A-\sin^2B

To Find :

\text{Prove RHS = LHS}

Identities Used :

\cos(x+y)=\cos x \cos y - \sin x \sin y

\cos(x-y)=\cos x \cos y + \sin x \sin y

\cos ^2 = 1- \sin ^2x

\sin ^2x = 1 - \cos ^2 x

Solution :

\textbf {LHS :}

\cos ^2A - \sin^2 B

\textbf{RHS :}

\cos (A+B) \cos (A-B)

\implies (\cos A \cos B - \sin A \sin B )(\cos A \cos B + \sin A \sin B)

(\because \cos(A+B)=\cos A \cos B- \sin A \sin B )

(\because \cos(A-B)=\cos A \cos B+ \sin A\sin B )

\implies \cos^2 A \cos ^2 B - \sin ^2 A \sin^2 B

( \because a^2 - b^2 = (a+b)(a-b))

\implies \cos^2 A(1- \sin^2 B) - (1-\cos^2 A)\sin ^2 B

(\because \cos ^2 B = 1- \sin ^2B \: \: \& \:\: \sin ^2A = 1 - \cos ^2 A)

\implies (\cos ^2 A - \cos ^2 A \sin ^2 B )-(\sin ^2 B - \sin ^2 B \cos ^2 A)

\implies \cos ^2 A - \cos ^2 A \sin ^2 B - \sin ^2 B + \sin ^2 B \cos ^2 A

\implies \cos^2 A - \sin ^2 B  = \bf LHS

Hence Proved.

Similar questions