Math, asked by varadvbartakke, 1 year ago

Prove that COS (A-B) = COS A COS B +SIN A SIN B

Answers

Answered by subhashnidevi4878
1

Three steps solutions

Step-by-step explanation:

Prove that,

cos(A - B) = cos A \times cos B + sin A\times sin B

Taking L.H.S ,

cos(A -B) = cos [A + (-B)]

cos(A -B) = cos A\times cos(-B) - sin A\times sin(-B)

∵  cos(-B) = cos B , sin(-B) = -sin B

∴  cos(A - B) = cos A \times cos B - sin A\times (-sin B)

Or,

cos(A - B) = cos A\times cos B + sin A\times sin B

Hence proved,

L.H.S. = R.H.S.

Answered by isyllus
0

Hence proved

\cos(A-B)=\cos A\cos B+\sin A\sin B

Step-by-step explanation:

To prove: \cos(A-B)=\cos A\cos B+\sin A\sin B

As we have a formula,

\cos(A+B)=\cos A\cos B-\sin A\sin B

Replace B as -B

\cos(A+(-B))=\cos A\cos (-B)-\sin A\sin (-B)

\cos(A-B)=\cos A\cos B-\sin A\sin (-B)     \because \cos(-x)=\cos x

\cos(A-B)=\cos A\cos B-\sin A(-\sin B)     \because \sin(-x)=-\sin x

\cos(A-B)=\cos A\cos B+\sin A\sin B     \because -(-)=+

Hence proved

#Learn more:

Trigonometry formulae

https://brainly.in/question/5388522

https://brainly.in/question/5776077

Similar questions