PROVE THAT cos(a + b) cos x - cos(b + x) sin a = sinb sin (x - a)
Answers
Answered by
2
Answer:
If cosx+cosy+cosz=0
sinx+siny+sinz=0
Show that cos(x−y)=cos(y−z)=cos(z−x)=
2
−3
∵cosx+cosy=−cosz
or, cos
2
x+cos
2
y+2cosx.cosy=cos
2
z
sinx+siny=−sinz
sin
2
x+sin
2
y+2sinx.siny=sin
2
z
Adding both side we get,
(cos
2
x+sin
2
x)+(cos
2
y+sin
2
y)+2(cosx.cosy+sinx.siny)=cos
2
z+sin
2
z
or, 1+1+2cos(x−y)=1
or, cos−(x−y)=
2
−1
Similarly we can prove,
sinx+sinz=siny
⟹sin
2
x+sin
2
z+2sinx.sinz=sin
2
y
⟹cosx+cosz=−cosy
⟹cos
2
x+cos
2
z+2cosx.cosz=cos
2
y
adding both we get,
1+1+2cos(z−x)=1
cos(z−x)=
2
−1
similarly cos(y−z)=
2
−1
hope this have helped you out a lot
please do follow me and Mark me as a brainliest
Similar questions