Math, asked by gaikwaddeepa703, 1 month ago

prove that cos(A-B) = cosA. cosB + sinA. sinB​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

We know,

By Euler's form

\rm :\longmapsto\: {e}^{ix}  = cosx + isinx

So, if we replace x by - x, we get

\rm :\longmapsto\: {e}^{ - ix}  = cos( - x) + isin( - x)

\rm :\longmapsto\: {e}^{ - ix}  = cosx -  isinx

Now,

Consider,

\rm :\longmapsto\: {e}^{ix}  = cosx + isinx

Replace x by A - B, we get

\rm :\longmapsto\: {e}^{i(A - B)}

\rm \:  =  \:  \: cos(A - B) + isin(A - B) -  - (1)

Now,

Again consider,

\rm :\longmapsto\: {e}^{i(A - B)}

can be rewritten as

\rm \:  =  \:  \:  {e}^{iA} \times  {e}^{ - iB}

\rm \:  =  \:  \: (cosA + isinA)(cosB - isinB)

\rm \:  =cosAcosB - icosAsinB + isinAcosB -  {i}^{2}sinAsincos

\rm \:  =cosAcosB - icosAsinB + isinAcosB  + sinAsincos

\rm \:  =  \:(cosAcosB + sinAsinB) + i(sinAcosB - sinBcosA)

Thus, from the above calculations, we get

\rm :\longmapsto\: {e}^{i(A - B)}  \: =  \:  cos(A - B) + isin(A - B)

and

\rm \:  {e}^{i(A - B)}  =  \:(cosAcosB + sinAsinB) + i(sinAcosB - sinBcosA)

So, on comparing above two equations we get

 \rm \: cos(A - B) + isin(A - B) = (cosAcosB + sinAsinB) + i(sinAcosB - sinBcosA)

On comparing real parts, we get

\rm :\longmapsto\:cos(A - B) = cosAcosB + sinAsinB

Hence, Proved

Additional Information ;-

If we compare imaginary parts, we get

\rm :\longmapsto\:sin(A - B) = sinAcosB - sinBcosA

If we replace, B by - B, we get

\rm :\longmapsto\:sin(A + B) = sinAcos( - B) - sin( - B)cosA

\rm :\longmapsto\:sin(A + B) = sinAcosB  +  sinBcosA

Similar questions