Prove that: Cos(A + B) + sin(A - B) = 2sin(45° + A)cos(45° + B)
Answers
Answered by
5
Answer
It will be very easy if we take the R.H.S
R.H.S
2 sin(45° + A)cos(45° + B)
= Sin (45 + A +45 + B) + Sin ( 45 + A - 45 - B )
= Sin ( 90 +A + B ) + Sin ( A - B )
= Cos (A+B) + Sin(A+B) [L.H.S]
L.H.S = R.H.S (Verified)
Answered by
0
Answer:
Step-by-step explanation:
LHS
= cosAcosB - sinAsinB + sinAcosB - cosAsinB
RHS
= 2(sin45°cosA + cos45°sinA)(cos45cosB - sin45sinB)
= 2(√2/2cosA + √2/2sinA)(√2/2cosB - √2/2sinB)
= 2( (1/2)cosAcosB - (1/2)cosAsinB + (1/2)sinAcosB - (1/2)sinAsinB)
= cosAcosB - cosAsinB + sinAcosB - sinAsinB
= LHS
Similar questions
Biology,
6 months ago
Computer Science,
6 months ago
Hindi,
6 months ago
Physics,
1 year ago
English,
1 year ago