Prove that: Cos(A + B) + sin(A - B) = 2sin(45° + A)cos(45° + B)
Answers
Answered by
60
I will simplify the right side until it becomes the left side:
2sin(45°+A)cos(45°+B)
2[sin(45°)cos(A) + cos(45)sin(A)][cos(45°)cos(B) - sin(45°)sin(B)]
2[cos(A) + sin(A)][cos(B)-sin(B)]
2[cos(A) + sin(A)][cos(B)-sin(B)]
2[cos(A) + sin(A)][cos(B)-sin(B)]
[cos(A) + sin(A)][cos(B)-sin(B)]
(1)[cos(A) + sin(A)][cos(B)-sin(B)]
[cos(A) + sin(A)][cos(B)-sin(B)]
cos(A)cos(B) - cos(A)sin(B) + sin(A)cos(B) - sin(A)sin(B)
Rearrange terms:
cos(A)cos(B) - sin(A)sin(B) + sin(A)cos(B) - cos(A)sin(B)
[cos(A)cos(B) - sin(A)sin(B)] + [sin(A)cos(B) - cos(A)sin(B)]
cos(A+B) + sin(A-B)
Answered by
152
Given Cos(A + B) + sin(A - B) = 2sin(45° + A)cos(45° + B)
lift hand side ( LHS )
Cos(A + B) + sin(A - B)
cosAcosB - sinAsinB + sinAcosB - cosAsinB
RHS
=> 2(sin45°cosA + cos45°sinA)(cos45cosB - sin45sinB)
=>2(√2/2cosA + √2/2sinA)(√2/2cosB - √2/2sinB)
=> 2( (1/2)cosAcosB - (1/2)cosAsinB + (1/2)sinAcosB - (1/2)sinAsinB)
=> cosAcosB - cosAsinB + sinAcosB - sinAsinB
LHS = RHS
HOPE IT'S HELP U
lift hand side ( LHS )
Cos(A + B) + sin(A - B)
cosAcosB - sinAsinB + sinAcosB - cosAsinB
RHS
=> 2(sin45°cosA + cos45°sinA)(cos45cosB - sin45sinB)
=>2(√2/2cosA + √2/2sinA)(√2/2cosB - √2/2sinB)
=> 2( (1/2)cosAcosB - (1/2)cosAsinB + (1/2)sinAcosB - (1/2)sinAsinB)
=> cosAcosB - cosAsinB + sinAcosB - sinAsinB
LHS = RHS
HOPE IT'S HELP U
Similar questions