Math, asked by shareefpm1198, 6 months ago

prove that Cos A by 1 minus tan a minus sin square A by Cos A minus sin a=sin a +cos a​

Answers

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \green{ \bold{ \: step \: by \: step \: explaination}}

\quad\bullet\bold{\underline{Given:}}

\bullet\bf{\dfrac{CosA}{1-TanA}+\dfrac{sinA^2}{sinA-cosA}=SinA+CosA}

\Large\bf{\underline{LHS:\to}}

 \:   \large \implies\bf{ \frac{cosx}{1 - tanx}  +  \frac{ {sinx}^{2} }{sinx - cosx} }

 \:  \implies \displaystyle \sf{ \frac{cosx}{1 -  \frac{sinx}{cosx} }  +   \frac{ {sinx}^{2} }{sinx - cosx} }

 \:  \implies \displaystyle \sf \:  \frac{ {cosx}^{2} }{cosx - sinx}  +  \frac{ {sin}^{2}x }{sinx - cosx}

 \:  \implies \displaystyle \sf \:  \frac{ -  {cos}^{2}x }{sinx - cosx}  +  \frac{ {sin}^{2}x }{sinx - cosx}

 \:  \implies \displaystyle \sf \:  \frac{ {sin}^{2} x -  {cos}^{2}x }{sinx - cosx}

 \: \large \  \pink {\bf{ \underline{by \: using \: property \:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b)}}}

 \:  \implies \displaystyle \sf \:  \frac{(sinx - cosx)(sinx + cosx)}{(sinx - cosx)}

 \:  \implies \displaystyle \sf \:  \frac{ \cancel{(sinx - cosx)}(sinx + cosx)}{ \cancel{sinx - cosx)}}

 \:  \implies \sf \: sinx \:  + cosx \:  \:  \: is \: the \: answer

\therefore\large\bf{\underline{LHS=RHS}}

 \\  \therefore  \boxed{ \bf{ \frac{cosx}{1 - tanx}  +  \frac{ {sin}^{2}x }{sinx - cosx}  = sinx + cosx}}

\red{■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□}

hope this answer is helpful for u

Similar questions