Math, asked by Injamul111, 1 year ago

prove that,
cos a + cos 3a + cos 5a + cos 7a + cos 9a = (sin 10a)/ 2 sina

Answers

Answered by pulakmath007
15

SOLUTION

TO PROVE

 \displaystyle \sf{ \cos A + \cos 3A +  \cos 5A +\cos 7A +\cos 9A  \: =  \frac{\sin 10A \: }{2\sin A}  }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \sf{2 \cos A \sin B =  \sin(A + B) - \sin(A - B) }

PROOF

 \displaystyle \sf{ \cos A + \cos 3A +  \cos 5A +\cos 7A +\cos 9A  \: }

  = \displaystyle \sf{\frac{1 \: }{2\sin A} \bigg(2\sin A \cos A +2 \cos 3A \sin A+2 \cos 5A \sin A  +2\cos 7A\sin A +2\cos 9A  \sin A\:  \bigg) }

  = \displaystyle \sf{\frac{1 \: }{2\sin A} \bigg(\sin 2A  +\sin4 A  - \sin 2A +\sin 6A   - \sin4A +\sin 8A - \sin 6A +\sin 10A - \sin 8A   \:  \bigg) }

 \displaystyle \sf{ =  \frac{\sin 10A \: }{2\sin A}  }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that : tan (45+A)= sec2A + tan2A

https://brainly.in/question/25501012

Similar questions