Math, asked by Denniskhiangte6608, 7 months ago

prove that cos A+cos (4 pi/3-A)+cos(4 pi/3+A)=0

Answers

Answered by pulakmath007
20

SOLUTION

TO PROVE

 \displaystyle \sf{ \cos A +  \cos \bigg( \frac{4\pi}{3}  - A \bigg) +\cos \bigg( \frac{4\pi}{3}  +  A \bigg)  = 0}

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{ \cos C +  \cos D  =2  \cos \bigg( \frac{C + D}{2} \bigg) \cos \bigg( \frac{C - D}{2}  \bigg) }

EVALUATION

LHS

 \displaystyle \sf{ =  \cos A +  \cos \bigg( \frac{4\pi}{3}  - A \bigg) +\cos \bigg( \frac{4\pi}{3}  +  A \bigg) }

 \displaystyle \sf{ =  \cos A +  \cos \bigg(  {240}^{ \circ}   - A \bigg) +\cos \bigg(  {240}^{ \circ} +  A \bigg) }

 \displaystyle \sf{ =  \cos A +2  \cos \bigg( \frac{  {240}^{ \circ}  + A +  {240}^{ \circ}  -  A }{2} \bigg) \cos \bigg( \frac{ {240}^{ \circ}  + A  -  {240}^{ \circ}   +  A }{2}  \bigg)}

 \displaystyle \sf{ =  \cos A +2  \cos \bigg( \frac{  {480}^{ \circ}  }{2} \bigg) \cos \bigg( \frac{ 2  A }{2}  \bigg)}

 \displaystyle \sf{ =  \cos A +2  \cos   {240}^{ \circ}   \cos  A}

 \displaystyle \sf{ =  \cos A  - 2  \cos   {60}^{ \circ}   \cos  A}

 \displaystyle \sf{ =  \cos A  - 2 \times  \frac{1}{2}    \times   \cos  A}

 \displaystyle \sf{ =  \cos A  -  \cos  A}

 \displaystyle \sf{ = 0}

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. proove that : tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A

https://brainly.in/question/9394506

2. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions