prove that... cos(a)cos(60-a)cos(60+a)=(cos(3a))/4
Answers
Answered by
161
We use the identities
Start with left hand side :
Start with left hand side :
ajngamer420:
can you derive the 2nd identity and thanks if you did
Answered by
83
we know that standard identity:
2 Cos A Cos B = Cos (A+B) + Cos (A-B)
here, A = 60-a and B = 60+a
Cos (a) Cos (60 - a ) Cos (60+a)
= Cos (a) * 1/2 * [ Cos (60-a+60+a) + Cos (60-a- 60-a) ]
= Cos (a) * 1/2 * [ Cos 120 + Cos (-2a) ]
= 1/2 * Cos (a) * [ -1/2 + Cos (2a) ]
= -1/4 * Cos (a) + 1/2 Cos (a) Cos (2a) --- apply the above identity again
= -1/4 * Cos (a) + 1/2 * 1/2 [ Cos 3a + cos a]
= 1/4 * Cos (3a)
2 Cos A Cos B = Cos (A+B) + Cos (A-B)
here, A = 60-a and B = 60+a
Cos (a) Cos (60 - a ) Cos (60+a)
= Cos (a) * 1/2 * [ Cos (60-a+60+a) + Cos (60-a- 60-a) ]
= Cos (a) * 1/2 * [ Cos 120 + Cos (-2a) ]
= 1/2 * Cos (a) * [ -1/2 + Cos (2a) ]
= -1/4 * Cos (a) + 1/2 Cos (a) Cos (2a) --- apply the above identity again
= -1/4 * Cos (a) + 1/2 * 1/2 [ Cos 3a + cos a]
= 1/4 * Cos (3a)
Similar questions