prove that cos a + cos b+ cos y + cos ( a + b + y)
= 4 cos (a+b/2). cos (b+y/2). cos (y+a/2)
Answers
Answered by
2
Answer:
cos a + cos b + cos c + cos (a+b+c)
=2 cos ((a+b)/2) cos ((a-b)/2) + 2 cos ((c+a+b+c)/2) cos ((c-a-b+c)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((-a-b)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((-(a+b))/2)
Remember cos(-x) = cos x and cos a + cos b is 2cos((a+b)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((a+b)/2)
2cos((a+b)/2) is taken common
= 2 cos ((a+b)/2) { cos ((a-b)/2) + cos ((a+b+2c)/2) }
= 2 cos ((a+b)/2) { 2cos((a-b+a+b+2c)/2*2) cos(a-b-a-b-2c)/2*2) }
= 2 cos ((a+b)/2) { 2 cos ((2a+2c)/4) cos((-2b-2c)/4) }
= 4 cos ((a+b)/2) cos ((a+c)/2) cos ((b+c)/2)
Similar questions
Geography,
21 days ago
Physics,
21 days ago
Social Sciences,
1 month ago
Math,
9 months ago
Math,
9 months ago