Math, asked by adikandamahakud277, 1 year ago

prove that cos A divide 1+sin A+1+sinA
by cos A=2secA

Answers

Answered by anu24239
3

 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }   +  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }  \\   \\  \frac{cos^{2} \alpha  +  {(1 +  \sin( \alpha ) })^{2}  }{ \cos( \alpha )( \sin( \alpha ) + 1 ) }  \\  \\  {1 - sin^{2} \alpha  } = cos^{2}  \alpha   \\  \\  \frac{(1 - sin^{2} \alpha ) + 1 +  \sin^{2}  \alpha  + 2 \sin( \alpha )   }{ \cos( \alpha )(1 +  \sin( \alpha ))  }  \\  \\  \frac{2(1 +  \sin( \alpha ) )}{ \cos( \alpha ) (1 +  \sin( \alpha )) }  \\  \\  \frac{2}{ \cos( \alpha ) }  \\  \\ and \: we \: know \: that \:  \frac{1}{ \cos( \alpha ) }  =  \sec( \alpha )  \\  \\ 2 \sec( \alpha )  \\  \\ hence \: proved

Similar questions